Complex Numbers

Part 2

$$z = a + bi$$
 is a complex number
The reciprocal of z is $\frac{1}{z} = \frac{\bar{z}}{a^2 + b^2}$.

$$z \times \bar{z} = a^{2} + b^{2}$$

$$z = \frac{a^{2} + b^{2}}{\bar{z}}$$

$$\frac{1}{z} = \frac{1}{\frac{a^{2} + b^{2}}{\bar{z}}} = \frac{\bar{z}}{a^{2} + b^{2}}$$

z = a + bi is a complex number

The reciprocal of z is
$$\frac{1}{z} = \frac{\bar{z}}{a^2 + b^2}$$
.

$$z = 1 + 2i$$

$$\frac{1}{z} = \frac{1 - 2i}{1^2 + 2^2} = \frac{1 - 2i}{5} = \frac{1}{5} - \frac{2}{5}i$$

$$z = \frac{2}{3}i$$

$$\frac{1}{z} = \frac{-\frac{2}{3}i}{\left(\frac{2}{3}\right)^2} = \frac{-\frac{2}{3}i}{\frac{4}{9}} = -\frac{3}{2}i$$

$$\overline{\left(\frac{Z}{Z'}\right)} = \frac{\bar{Z}}{\bar{Z'}}$$

$$z' = \frac{z'}{\overline{z}} \times z$$

$$\overline{z'} = \frac{\overline{z'}}{z} \times z = \overline{\left(\frac{z'}{z}\right)} \times \overline{z}$$

$$\overline{\left(\frac{z'}{z}\right)} = \frac{\overline{z'}}{\overline{z}}$$

$$\frac{z = 1 + 2i}{\left(\frac{z}{z'}\right)} = \frac{1-2i}{2-i}$$

$$\overline{\left(\frac{1}{z}\right)} = \frac{1}{\bar{z}}$$

$$\overline{\left(\frac{1}{z}\right)} = \frac{\overline{1}}{\overline{z}} = \frac{1}{\overline{z}}$$

$$Re(z) = \frac{1}{2}(z + \bar{z}) \text{ and } Im(z) = \frac{1}{2i}(z - \bar{z})$$

$$z = a + bi$$

$$\bar{z} = a - bi$$

$$z + \bar{z} = 2a$$

$$a = \frac{z + \bar{z}}{2}$$

$$Re(z) = \frac{1}{2}(z + \bar{z})$$

$$z = a + bi$$

$$\bar{z} = a - bi$$

$$z - \bar{z} = 2bi$$

$$b = \frac{z - \bar{z}}{2i}$$

$$Re(z) = \frac{1}{2i}(z - \bar{z})$$


```
z is a real number if and only if z = \bar{z}
z is pure imaginary if and only if z = -\bar{z}
```

```
z is real so Im(z) = 0

z = \bar{z} = a

z is pure imaginary so Re(z) = 0

z = bi so \bar{z} = -bi

z = -\bar{z}
```


Given z = a + bi and z' = a' + b'i

To write $\frac{z}{z'}$ in algebraic form (x+iy) multiply the fraction by $\frac{\overline{z'}}{\overline{z'}}$

$$\frac{z}{z'} = \frac{z}{z'} \times \frac{\bar{z'}}{\bar{z'}} = \frac{z\bar{z'}}{z'\bar{z'}} = \frac{aa' - b(-b') + i(a(-b') + ba')}{a'^2 + b'^2} = \frac{aa' + bb' + i(-ab' + ba')}{a'^2 + b'^2}$$

Which is in the form of x + iy where:

$$x = \frac{aa' + bb'}{a'^2 + b'^2}$$
 and $y = \frac{-ab' + ba'}{a'^2 + b'^2}$

Given z = a + bi and z' = a' + b'i

To write $\frac{z}{z'}$ in algebraic form (x+iy) multiply the fraction by $\frac{\overline{z'}}{\overline{z'}}$

$$\frac{1+2i}{1-i} = \frac{1+2i}{1-i} \times \frac{1+i}{1+i} = \frac{1+i+2i+2i^2}{1^2+1^2} = \frac{-1+3i}{2}$$

Square root of a complex number

We call a square root of a complex number z every complex number u such that $u^2 = z$.

$$1 + i$$
 is a square root of $2i$ since $(1 + i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i$

Square root of a complex number

Every complex number has two opposite square root in C.

```
z = 5 - 12i
u = a + bi is a square root of z, so u^2 = z
(a+bi)^2 = 5-12i
a^2 + 2abi - b^2 = 5 - 12i
By comparing, a^2 - b^2 = 5 and 2ab = -12
2ab = -12 ; a = -\frac{12}{2h} = -\frac{6}{h}
a^2 - b^2 = 5 so, \frac{36}{b^2} - b^2 = 5; \frac{36 - b^4}{b^2} = 5 therefore 36 - b^4 = 5b^2
h^4 + 5h^2 - 36 = 0
Let t = b^2: t^2 = b^4 so, t^2 + 5t - 36 = 0
```


Square root of a complex number

Every complex number has two opposite square root in C.

Example:

$$t^{2} + 5t - 36 = 0$$

$$\Delta = b^{2} - 4ac = 25 - 4(1)(-36) = 25 + 144 = 169$$

$$t_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-5 - 13}{2} = -9 \quad ; \quad t_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-5 + 13}{2} = 4$$
For $t = -9$ \quad ; \quad b^{2} = -9 \text{ impossible}

For $t = 4$ \quad ; \quad b = 2 \quad or \quad b = -2

But $a = -\frac{6}{b}$
So $a = -\frac{6}{2} = -3$ or $a = -\frac{6}{-2} = 3$

Therefore the square roots of z = 5 - 12i are -3 + 2i; 3 - 2i

Quadratic equation

Any equation in the form of $A^2 + B^2 = 0$ has:

- > No real roots in IR
- ightharpoonup Two distinct roots in \mathbb{C} : $A^2 = -B^2 = B^2 i^2$ so A = Bi or A = -Bi

$$x^2 = -1$$

 $x^2 = -1 = i^2$ so the roots are $x = i$ or $x = -i$

$$(x-1)^2 = -4$$

 $(x-1)^2 = 4i^2$
 $x-1=2i$ or $x-1=-2i$
 $x=1+2i$ $x=1-2i$

Quadratic equation

Consider the quadratic equation $ax^2 + bx + c = 0$ $a \ne 0$ such that $\Delta < 0$ The equation in this case has two roots in $\mathbb C$ and they are conjugate complex numbers.

$$\Delta < 0$$

so $\Delta = ki^2$ where k is a positive number $z_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-b - \sqrt{k}i}{2a}$
 $z_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-b + \sqrt{k}i}{2a}$
 $Re(z_1) = Re(z_2)$
 $Im(z_1) = -Im(z_2)$
So z_1 & z_2 are conjugates.

Quadratic equation

$$z^{2} + 3z + 4 = 0$$

$$\Delta = b^{2} - 4ac = 9 - 16 = -7 = 7i^{2}$$

$$z_{1} = \frac{-3 - \sqrt{7}i}{2} \quad ; \quad z_{2} = \frac{-3 + \sqrt{7}i}{2}$$

Graphical representation

A complex number z can be identified with the ordered pair (Re(z);Im(z)) which can be the coordinates of a point in the system of coordinates.

(x'x) is used to display the real part.

(y'y) is used to display the imaginary part.

z is called the affix of the point.

 $A(z_A)$ and $B(z_B)$ are two points. $z_{\overrightarrow{AB}} = z_B = z_A$ Example: A(1+i) and B(2+3i) $z_{\overrightarrow{AB}} = z_B - z_A = 2 + 3i - 1 - i = 1 + 2i$

Answer with true or false and justify.

1 the reciprocal of $\frac{2}{3}i$ is $\frac{3}{2}i$

False,
$$\frac{1}{\frac{2}{3}i} = \frac{3}{2i} \times \frac{-2i}{-2i} = -\frac{6i}{-4i^2} = -\frac{6i}{4} = -\frac{3}{2}i$$

Answer with true or false and justify.

2 the algebraic form of $z = \frac{2}{3+i}$ is $\frac{3-i}{2}$

$$Z = \frac{2}{3+i} = \frac{2}{3+i} \times \frac{3-i}{3-i} = \frac{6-2i}{9-i^2} = \frac{6-2i}{10} = \frac{3-i}{5}$$

Answer with true or false and justify.

$$3 z^2 + 3z + 1 = 0 \text{ has real roots}$$

True,
$$\Delta = b^2 - 4ac = 9 - 4(1)(1) = 5$$

$$z_1 = \frac{-3 - \sqrt{5}}{2} \text{ and } z_2 = \frac{-3 + \sqrt{5}}{2} \text{ which are real numbers}$$

Answer with true or false and justify.

4 the points with affixes i; -i; 3i and $\frac{i}{2}$ are collinear.

True, since:

The 4 affixes are pure imaginary, so the 4 points belong to (yAxis).

Answer with true or false and justify.

5 if A(-1-3i) and B(2-5i) then $\overrightarrow{AB}(-3+2i)$

False, since:

$$Z_{\overrightarrow{AB}} = Z_B - Z_A = 2 - 5i - (-1 - 3i) = 2 - 5i + 1 + 3i = 3 - 2i$$

Answer with true or false and justify.

6 the two points of affixes z and \bar{z} are symmetric with respect to (xAxis)

True, since:

```
Suppose that M(z) and N(\bar{z})
```

$$Re(z) = Re(\bar{z})$$
 so $x_M = x_N$

And
$$Im(z) = -Im(\bar{z})$$
 so $y_M = -y_N$

